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Abstract

The gquantum well resonant-tunneling diode has
attracted a good deal of attention over the past
few years, primarily because the active region
of this device spans such a small length. Sim-
plified quantum-mechanical models of this de-
vice abound, but these have been unsuccessful in
quantitatively describing the device characteris-
tics. We have found that agreement with ezperi-
mental characteristics can be markedly improved
by using more realistic energy-band and potential
profile models.

1 Introduction

Efforts to realize useful quantum devices have re-
sulted in the investigation of a multitude of differ-
ent material systems. The proliferation of exotic
material systems has placed many demands on
theorists trying to predict quantum transport be-
havior in these devices. In order to model quan-
tum transport, it is necessary to include all of
the relavent states which carriers may occupy.
The quantum states in a crystal are described by
its energy-momentum dispersion relationship or
bandstructure. The majority of theoretical inves-
tigations of quantum devices to date have em-
ployed highly simplified models of bandstructure.
However, it has become apparent that a more
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complete description of bandstructure must be in-
corporated into the transport models if we are to
simulate many of the promising material systems
which are currently under investigation. How-
ever, full bandstructure models require the inclu-
sion of transverse basis states in the Hamiltonian
making I-V simulations numercally prohibitive.
The predominant obstacle in performing such cal-
culations is the integration over extremely narrow
spectral features arising from transmission reso-
nances. '

A second issue in the simulation of these de-
vices concerns the potential profile, and its ef-
fects on both the spectroscopy and statistics of
the system. We have found that the potential
profile may often be adequately described by the
Thomas-Fermi (zero current) approximation, but
the distribution and occupation of the states in
the regions adjacent to the quantum well struc-
ture must be accurately accounted for in the cal-
culation.

2 Energy Band Model

For several years now it has been recognized that
the effective-mass model is insufficient to accu-
rately describe tunneling through indirect gap
barriers {1, 2, 3, 4]. The interaction between
quasi-bound X states in the barrier with contin-
uum I' states results in resonance-antiresonance



features known as Fano resonances [5]. Such fea-
tures have been observed experimentally as neg-
ative differential resistance in GaAs/AlAs/GaAs
single barrier heterostructures [6]. In order to de-
scribe tunneling in these structures one must use
models which take material bandstructures into
account. In this work we choose to describe band-
structure using tight binding models. The Quan-
tum Transmitting Boundary Method (QTBM)
is implemented to obtain open system boundary
conditions for the tight-binding Hamiltonian. Us-
ing this method one obtains scattering states by
simply solving a sparse system of linear equations.
In order to accurately model the electronic
structure of the material we have employed the
sp3s* empirical tight-binding model [7]. In this
basis the Schrodinger equation is expressed as:
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¥, is a subvector containing the atomic orbital
coefficients for the jth layer.. The Hamiltonian
matrix elements are contained in the submatrices
S; and D;. The tight-binding parameters used in
this work are taken from Boykin [8]. In our for-
mulation each layer corresponds to a lattice unit
cell. Therefore these subvectors and submatrices
are of order ten for the sp3s* model ( 5 anion and
5 cation orbitals ). At the GaAs/AlAs interface
the tight binding parameters are taken to be the
average of those in the bulk materials on either
side.

This Hamiltonian is coupled to the semi-
infinite contact regions by adapting the Quantum
Transmitting Boundary Method (QTBM) [9, 10]
to the tight binding basis. The QTBM operator
is equivalent to the inverse of the propogator (¢")
for the system. We have developed efficient nu-
merical techniques to locate the poles and zeros
of g” Our approach is to determine the position
and width of the resonance lineshape by numeri-
cally locating the poles of the propogator gf*(E)
in the complex energy plane. We have developed
a shift and invert non-symmetric Lanczos algo-
rithm which allows us to rapidly determine the
location of these poles {11]. The complex energies
associated with the poles provides the location

and width of the sharp features in the transmis-
sion coefficient. With this information we may
obtain an analytic fit to the transmission charac-
teristic. In order to obtain the fit, we assume a
rational form for the transmission lineshape and
expand the denominator as a partial fraction.
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Here, E? and E* represent the location of the
poles and zeros of g®(E). The partial fraction
expansion coefficients (R;) are treated as fitting
parameters for the transmission lineshape. Once
the fits are obtained, integration over the reso-
nances becomes a trivial numerical task.

We apply our method to calculate current den-
sity versus voltage in a GaAs/AlAs resonant tun-
neling diode. In this structure, resonances due
to states confined by the X-point conduction
band profile significantly contribute to the cur-
rent flowing through the device. In addition, non-
parabolicity of the imaginary bands in the AlAs
barrier result in increased tunneling current in
the device. Thus, a full bandstructure model is
necessary to accurately simulate current in this
structure. In Figure 1, single band and multi-
band simulations of the I-V characteristic of a
GaAs/AlAs RTD are compared with experiment.
In Figure 2, the electron density of states arising
from the single band and multi-band models are
compared.

3 The Potential Profile

A critical aspect of the problem of accurately
modeling resonant-tunneling devices concerns the
potential profile and its effect on the density
and occupation of states in the contacting lay-
ers adjacent to the quantum-well structure, as
well as its effect on the transmission amplitudes
through that structure. Our investigations indi-
cate that confined states often form in the poten-
tial “notch” before the first energy barrier, and
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Figure 1: (a) Current density vs. voltage for a GaAs/AlAs double barrier resonant tunneling diode.
Solid line is experimental data, dashed line is a full bandstructure calculation, and dotted line is a single
band effective mass calculation. (b) Analytic fit for several resonances in the GaAs/AlAs double barrier

resonant tunneling diode. Solid line is the actual transmission characteristic, dashed line is the analytic
fit.
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Figure 2: (a) Single band density of states for the GaAs/AlAs RTD. (b) Multi-band density of states
for the GaAs/AlAs RTD. The full bandstructure model predicts additional resonances due to states
confined by the X-point profile. This results in the additional current predicted in Figure 1(a).



that tunneling of electrons out of these states is
a major contributor to the peak current density
[12].

The influence of such states may be efectively
computed by conceptually dividing the device
model into five regions:

1. The left-hand lead, a semi-infinite region in
which the potential is constant.

2. The left-hand contact layer, a finite region
in which the potential is determined self-
consistently.

3. The quantum-well structure.

4. The right-hand contact l;iyer, again a finite
region in which the potential is determined
self-consistently.

5. The right-hand lead, again a semi-infinite re-
gion in which the potential is constant.

Regions 2 and 4 are taken to be in equilibrium
with regions 1 and 5, respectively. The gF(E)
in each region is evaluated, including the cou-
pling to the adjacent regions. From this quantity
the (local) density of states is obtained. Invok-
ing the local-equilibrium assumption in regions 2
and 4 then produces the charge density in these
regions by integrating the occupied-state density
with respect to energy. The charge density in re-
gion 3 may be neglected in most devices (except
those designed to emphasize intrinsic bistability).
The self-consistent potential profile is then read-
ily obtained by iteration. The tunneling current
is evaluated only across region 3, but this is done
by taking into account the density of states and
occupation in regions 2 and 4.

In effect, this procedure presumes that there is
a high rate of inelastic processes within regions
2 and 4. (Quasi-equilibrium is maintained if the
rate of inelastic collisions in these regions is signif-
icantly larger than the rate of carrier loss by tun-
neling.) Inelastic processes which occur during
the tunneling processes are of course also of in-
terest. Lake and co-workers have developed tech-
niques required to treat such processes within the
nonequilibrium Green’s function (or Keldysh) ap-
proach [13]. Their results indicate that the inclu-

sion of such processes usually has a much less pro-
nounced effect on the I(V) curve than the band
structure and potential profile effects emphasized
here.
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